Exam 3 – Learning Objectives (by CR for 89-90)

ACID-BASE Reactions (explained in sections 6.1-6.4 of CiC)

<u>Step 3</u>: React-and-Balance (reactors \rightarrow H₂O or H₂CO₃ [or H₂O (l) + CO₂ (g)], and spectators \rightarrow salt, which is a +/- combo that isn't an acid, isn't a base] Here are **neutralization** rxns:

examples: <u>H</u> Cl	$+ \operatorname{Na} \overline{OH} \rightarrow \overline{HOH}$	+ NaCl
H C1	$+ \operatorname{NH}_4\mathbf{OH} \rightarrow \mathbf{H}_2\mathbf{O} +$	NH_4OH
H C1 +	$ha HCO_3 \rightarrow H_2O + O$	$CO_2 + NaCl$
2 H Cl	$+ \operatorname{Na}_2\operatorname{CO}_3 \rightarrow \operatorname{H}_2\operatorname{O} + \operatorname{O}_3$	$CO_2 + 2 NaCl$
[optional] H ₂ SO ₄	$+ 2 \text{ NaOH} \rightarrow 2 \text{ H}_2\text{O}$	+ Na_2SO_4
[optional] Mg(O	$\mathbf{H})_2 + 2 \mathbf{H} \mathbf{C} \mathbf{I} \rightarrow 2 \mathbf{H}_2 \mathbf{O}$	+ MgCl ₂
[later] NaOH	+ CH ₃ COOH \rightarrow H ₂ O	+ NaCH ₃ COO

These ideas (left, below) are for demos (NH₃, S) & 3f/3i, 4a/4b.

<u>Acid-Forming Reactions</u> (from Exam 2, Refrigerator Lab, ...) On pages 255-256 of CiC, 2 sources of Acid Rain are SO₃ (from combustion of S to SO₂-(air) \rightarrow oxidized to SO₃) and NO₂ (from NO (in high-temp engines/furnaces) -(air) \rightarrow oxidized to NO₂); normal (unpolluted) rain is slightly acidic (pH \approx 5.3 on Nov 2, slide 25) due to dissolved CO₂ but this isn't defined as Acid Rain (pH range 3-5). 2nd proton: H₂SO₄ most, H₂CO₃ & H₂SO₃ a little.

$$H_{2}O + CO_{2} \rightarrow H_{2}CO_{3} \rightarrow H^{+} + HCO_{3}^{-}$$

$$H_{2}O + SO_{2} \rightarrow H_{2}SO_{3} \rightarrow H^{+} + HSO_{3}^{-}$$

$$\frac{1}{2}O_{2}$$

$$H_{2}O + SO_{2} \rightarrow H_{2}SO_{4} \rightarrow H^{+} + HSO_{4}^{-} (\text{and} \rightarrow H^{+} + SO_{4}^{2-})$$

A-Rain: $H_2O + SO_3 \rightarrow H_2SO_4 \rightarrow H^+ + HSO_4^-$ (and $\rightarrow H^+ + SO_4^{--}$) A-Rain: $4 \text{ NO}_2 + 2 H_2O + O_2 \rightarrow 4 \text{ HNO}_3 \rightarrow H^+ + \text{ NO}_3^+$

For the two lines below, you can look at a pH scale (e.g. as on my Quiz 6 handout) while you're thinking about pH relationships. up/down relationships: for SO₃ + H₂O, [H+] increases (acidity \uparrow , pH \downarrow); NH₃ + H₂O, [OH⁻] increases (basicity \uparrow , pH \uparrow , acidity \downarrow). dilutions: diluting acid makes it more neutral (pH = 7), less acidic, pH \uparrow ; diluting base makes it more neutral, less basic, pH \downarrow .

<u>"Main Concepts"</u> (objectives on Study Guide for Exam 3): <u>1a-b-c-d</u> (below), <u>2a-b-c-d</u> (at end), <u>3f/3i</u> & <u>4a-4b</u> (above), <u>3e/5a</u> (handout #6, middle "2a, 2a"), <u>3a-b-c-d</u> (ho #6, "2b, 2b"), 5b (ho #7a). We can talk about these (+ old exams...) T-<u>W</u>-R-<u>F</u>.

<u>LABS</u>: check reactions above, calculations in both old exams. <u>demos</u>: NH₃ (above, #6 bottom-left), cond/pH (#6 middle), lead iodide (L 21, sld 30, \rightarrow PbI₂ (<u>s</u>)), S (rxns above).

1a-b-c-d: polarity of molecule is <u>determined</u> by electronegativity (metals $H \approx C \text{ N/Cl O F}$) & molecular geometry ("canceling" due to symmetry?). polarity of molecule is <u>observed</u> in properties (like dissolves like, with polar water); if dissolves, it's polar [or it reacts and "disappears" into solution]; if (e.g., CFCs) doesn't dissolve, it's *nonpolar*. [also see bottom of #6, middle-right of #7b]

	name of gas	molecular shape	polar?	reacts with H ₂ O?	name of rxn-product	
NH ₃	ammonia	trigonal pyramid	yes!	yes, \rightarrow NH ₄ OH	ammonium hydroxide *	
HCl	hydrogen chloride	(trivially linear)	yes!	yes, \rightarrow HCl (aq)	hydrochloric acid	
NO ₂	nitrogen dioxide	bent (:, 3 dirns) •	yes	yes, \rightarrow HNO ₃	nitric acid	
SO ₃	sulfur trioxide	trigonal planar	no	yes, \rightarrow H ₂ SO ₄	sulfuric acid	
SO ₂	sulfur dioxide	bent (:, 3 dirns)	yes	yes, \rightarrow H ₂ SO ₃	sulfurous acid	
Does gas "wash out in rain"? above yes, below no		2 factors affect solubility				
CO ₂	carbon dioxide	linear	no	yes, \rightarrow H ₂ CO ₃	carbonic acid	
CF_2Cl_2	dichlorodifluorom	tetrahedral	small	no	n.a.	
O ₂	oxygen	(trivially linear)	no	no	n.a.	
N ₂	nitrogen	(trivially linear)	no	no	n.a.	

* also household ammonia (solution of ammonia in water); ammonia fountain demo (bottom-left of ho #6), more is above-and-right.

Additional Study Questions in the final part (6-7-8-9-10) of the "Exam 3 Study Guide"; look at it while you read my comments. **6a/e:** "drawing isomers" (#7b): W, $C_5H_{12} \& C_5H_{10}$. F, C_6H_{14} . **6b:** creativity + ("only connectivity matters") same or different?

7a: "windows" has two meanings (here, Asmt 4), ≠. [108-110]
7d/e, 10a-10g: Nov 9 (slides 11-33, 65-86); bottom of my #7a.
10e: fluorescence-ACE (<u>Absorb UV, Convert, Emit visible</u>) ≈ pavement-ACE (<u>Abs visible, Convert [≠], Emit IR</u>), sl 25-28.

8a-e,h: Nov 9/12, Slides 34-66. CiC, pages 119-123. Asmt 4.
8d: concentrations CO₂ (.04%), O₂ (21%), N₂ (78%), Ar (.9%); most (not atoms, diatomic symmetric molecules) absorb IR.
8h: Nov 9/12, sl 23-24. (over arrow: visible light, chlorophyll)

9a-g: Nov 9/12, sl 73-113/end. **9c** (CFCs by UV-C \rightarrow Cl•, in stratosphere, CH₄ by •OH, I'm not sure about CO₂ (here or in 9e; see *, p 131 table); **9d/9e** (GWP is per molecule, concentration is 2nd factor; GWP depends on amount of IR-absorption, if it absorbs in "windows", atmospheric lifetime; **9a** (p 132).

I.O.U. – Tonight & tomorrow morning, I'll revise this semifinal version, and will add a few comments about the two Old Exams.