Exam 3 – Learning Objectives (by CR for 89-90)

ACID-BASE Reactions (explained in sections 6.1-6.4 of CiC)

<u>Step 1</u>: write neutral ion-combos (e.g. Na_2CO_3 not $NaCO_3$) <u>Step 2</u>: match reactors with correct numbers (e.g. $H^+ + OH^-$ to form H_2O ; or $H^+ + HCO_3^-$ to form H_2CO_3 , or $2 H^+ + CO_3^{2-}$)

<u>Step 3</u>: React-and-Balance (reactors \rightarrow H₂O or H₂CO₃ [or H₂O (l) + CO₂ (g)], and spectators \rightarrow salt, which is a +/- combo that isn't an acid, isn't a base] Here are **neutralization** rxns:

examples: <u>H</u> C	$+ \operatorname{Na}\underline{OH} \to \underline{HOH}$	<u>I</u> + NaCl
HCl	$+ \mathrm{NH}_4\mathrm{OH} \rightarrow \mathrm{H}_2\mathrm{O}$	+ NH ₄ OH
HCl	$I + NaHCO_3 \rightarrow H_2O +$	$-CO_2 + NaCl$
2 H	$Cl + Na_2CO_3 \rightarrow H_2O +$	$-CO_2 + 2$ NaCl
[optional] H ₂ S	$O_4 + 2 \text{ NaOH} \rightarrow 2 \text{ H}_2 O_4$	\mathbf{D} + $\mathbf{Na}_2\mathbf{SO}_4$
[optional] Mg($\mathbf{OH})_2 + 2 \mathbf{HCl} \rightarrow 2 \mathbf{H}_2$	$O + MgCl_2$
[later] NaO	$\mathbf{H} + \mathrm{CH}_{3}\mathrm{COOH} \rightarrow \mathbf{H}_{2}\mathbf{O}$	$O + NaCH_3COO$

<u>Acid-Forming Reactions</u> (from Exam 2, Refrigerator Lab, ...) On pages 255-256 of CiC, 2 sources of Acid Rain are SO₃ (from combustion of S to SO₂-(air)→ oxidized to SO₃) and NO₂ (from NO (in high-temp engines/furnaces) -(air)→ oxidized to NO₂); normal (unpolluted) rain is slightly acidic (pH ≈ 5.3 on Nov 2, slide 25) due to dissolved CO₂ but this isn't defined as Acid Rain (pH range 3-5). 2nd proton: H₂SO₄ most, H₂CO₃ & H₂SO₃ a little. H₂O + CO₂ → H₂CO₃ → H⁺ + HCO₃⁻ (normal acidic rain)

 $H_2O + \underline{SO}_2 \rightarrow H_2SO_3 \rightarrow H^+ + HSO_3^-$

A-Rain: $H_2O + SO_3 \rightarrow H_2SO_4 \rightarrow H^+ + HSO_4^-$ (and $\rightarrow H^+ + SO_4^{-2-}$) A-Rain: $4 \text{ NO}_2 + 2 H_2O + O_2 \rightarrow 4 \text{ HNO}_3 \rightarrow H^+ + \text{ NO}_3^+$

NO

base: $NH_3(g) + H_2O \rightarrow NH_4OH \rightarrow NH_4^+ + OH^-$

For the two lines below, you can look at a pH scale (e.g. as on my Quiz 6 handout) while you're thinking about pH relationships. up/down relationships: for SO₃ + H₂O, [H+] increases (acidity \uparrow , pH \downarrow); NH₃ + H₂O, [OH⁻] increases (basicity \uparrow , pH \uparrow , acidity \downarrow). dilutions: diluting acid makes it more neutral (pH = 7), less acidic, pH \uparrow ; diluting base makes it more neutral, less basic, pH \downarrow .

<u>"Main Concepts"</u> on Study Guide (all covered on *handouts*), *Above:* Acid-Base (<u>3f/3i</u>), Acid Rain (<u>4ab</u>), <u>demos</u> (NH₃, S). *Quiz 6:* CFCs [top], pH scale & calculations (<u>3e/5a</u>) [middle], [lower-middle] Solutions (<u>3abcd</u>) & conductivity/pH demo.

Quiz 7a: mole calculations (<u>5b</u>) & lab calcltns, E balance (<u>2bc</u>). *Quiz 7b:* HC isomers (<u>6</u>), polarity (<u>1</u>), calculation-precision. *Below:* Polarity (<u>1</u>), Greenhouse balance/gases (2 = 7.8.9.10).

1a-b-c-d: polarity of molecule is <u>determined</u> by electronegativity (metals $H \approx C \text{ N/Cl O F}$) & molecular geometry ("canceling" due to symmetry?). polarity of molecule is <u>observed</u> in properties (like dissolves like, with polar water); if dissolves, it's polar [or it reacts and "disappears" into solution]; if (e.g., CFCs) doesn't dissolve, it's *nonpolar*. [also see bottom of #6, middle-right of #7b]

	name of gas	molecular shape	polar?	reacts with H2O?	name of rxn-product	
NH ₃	ammonia	trigonal pyramid	yes!	yes, → NH₄OH	ammonium hydroxide *	
HCl	hydrogen chloride	(trivially linear)	yes!	yes, \rightarrow HCl (aq)	hydrochloric acid	
NO ₂	nitrogen dioxide	bent (:, 3 dirns) •	yes	yes, \rightarrow HNO ₃	nitric acid	
SO ₃	sulfur trioxide	trigonal planar	no	yes, \rightarrow H ₂ SO ₄	sulfuric acid	
SO_2	sulfur dioxide	bent (:, 3 dirns)	yes	yes, \rightarrow H ₂ SO ₃	sulfurous acid	
Does gas "wash out in rain"? above yes, below no		2 factors affect solubility				
CO ₂	carbon dioxide	linear	no	yes, \rightarrow H ₂ CO ₃	carbonic acid	
CF_2Cl_2	dichlorodifluorom	tetrahedral	small	no	n.a.	
O ₂	oxygen	(trivially linear)	no	no	n.a.	
N ₂	nitrogen	(trivially linear)	no	no	n.a.	

* aka household ammonia (solution of ammonia in water); ammonia fountain demo (bottom-left of ho #6), more is above-and-right.

Additional Study Questions in the final part (6, 7 8 9 10) of the "Exam 3 Study Guide"; look at it while you read my comments. **6a/e:** "drawing isomers" (#7b): W, $C_5H_{12} \& C_5H_{10}$. F, C_6H_{14} . **6b:** creativity + ("only connectivity matters") same or different?

7a: "windows" has two ≠ meanings (here, Asmt 4) [p 108-110]
7d/e, 10a-10g: Nov 9 (slides 11-33, 65-86); bottom of my #7a.
10e: fluorescence-ACE (Absorb UV, Convert, Emit visible) ≈ pavement-ACE (Abs visible, Convert [≠], Emit IR), sl 25-28.

8a-e,h: Nov 9/12, Slides 34-66. CiC, pages 119-123. Asmt 4.
8d: concentrations, CO₂ (.04%), O₂ (21%), N₂ (78%), Ar (.9%); most absorb IR (not atoms, diatomic symmetric molecules).

8h: Nov 9/12, sl 23-24. (over arrow: visible light, chlorophyll)

9a-g: Nov 9/12, sl 73-113/end. **9c** (CFCs by UV-C \rightarrow Cl•, in stratosphere, CH₄ by •OH, CO₂ by ? (p 131 table, * comment); **9d/9e** (GWP is per molecule, concentration is 2nd factor; GWP depends on amount of IR-absorption, if absorbs in "windows", atmospheric lifetime. **9a** (sources of methane, p 132).

lead iodide demo {L 21, sl 30, \rightarrow PbI₂ (**s**)}, heterogeneous soltn

Old Exams: lab-calculations for HCO₃/CO₃ (2011-I, 2012-II); graph-labels (e.g. transm vs abs); answer using **correct units**! <u>Comments about Coverage-Changes</u> are in *our sections-page*.