A MODEL OF “INTEGRATED SCIENTIFIC METHOD”
AND ITS APPLICATION FOR THE ANALYSIS OF INSTRUCTION

by
Craig F. Rusbult

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Curriculum and Instruction)

at the
UNIVERSITY OF WISCONSIN-MADISON
1997

© Copyright 1997 by Craig F. Rusbult
All Rights Reserved
TABLE OF CONTENTS

Abstract .. i
Acknowledgments .. iii
Table of Contents ... iv
List of Figures and Tables ... xiii

CHAPTER 1: An Overview .. 1
 Introduction ... 1
 Objective 1 .. 2
 Objective 2 .. 3
 Significance of the Research ... 7

CHAPTER 2: A Model of ‘Integrated Scientific Method’ ... 11
 2.00: Goals for a Model of ISM .. 11
 THE ISM FRAMEWORK .. 14
 2.01: Empirical Factors in Theory Evaluation .. 15
 2.02: Conceptual Factors in Theory Evaluation ... 17
 2.03: Cultural-Personal Factors in Theory Evaluation ... 19
 2.04: Theory Evaluation .. 20
 2.05: Theory Invention ... 23
 2.06: Experimental Design .. 25
 2.07: Problem Solving, Thought Styles, and Thinking .. 28
 A. Problem-Solving Projects .. 28
 B. Thought Styles ... 30
 C. Mental Operations ... 31
 AN EVALUATION OF ISM AS A DESCRIPTIVE FRAMEWORK 32
 2.08: Can ISM Describe a Wide Range of Views and Practices? 32
 A. One Framework, Many Elaborations .. 32
 B. Can ISM describe a wide range of views? .. 32
 C. External Consistency and Retractive Inference? .. 33
 D. Cultural-Personal Influence? .. 34
 E. Hypothetico-Deductive Reasoning? .. 35
 F. Analysis and Holism ... 36
 G. Can ISM describe a wide range of science? ... 37
 H. Is ISM biased? .. 38
 I. Can ISM cope with differences in terminology? ... 39
 2.09: Is ISM a model for ‘scientific method’? (Part 1) .. 44
A. A Penchant for Patterns? ... 44
B. Skeptics about Methods ... 45
C. Does ISM try to describe a ‘method’ in science? 46
D. Is ISM a Model? ... 48

AN ISM ELABORATION ... 49

2.1: Empirical Factors in Theory Evaluation .. 50
 2.11: System and Model, Predictions and Observations 50
 A. Theories .. 50
 B. Experimental System ... 50
 C. Theory-Based Model of Experimental System 51
 D. Model-Based Predictions ... 53
 E. Experimental Observations .. 53

2.12: Hypothetico-Deductive Logic .. 54
 A. Degree of Agreement ... 54
 B. Degree of Predictive Contrast .. 55
 C. Two Evaluation Criteria, and Multiple Sources of Data 57

2.2: Conceptual Factors in Theory Evaluation 58
 2.21: Simplicity and Internal Consistency ... 59
 A. Simplification ... 59
 B. Systematicity .. 60
 C. Simplicity ... 60
 D. Internal Consistency ... 61

2.22: Conflicting Criteria ... 61
 A. Simplification versus Completeness and Empirical Adequacy 61
 B. Ad Hocness versus Inventive Revision 63

2.23: Constraints on Theory-Components ... 63
 2.24: Description and Explanation ... 64
 A. Is there an explanation for gravity? ... 64
 B. Empiricism ... 66
 C. Theories (descriptive and explanatory) in ISM 67

2.25: Cognitive Utility .. 67
 A. Theory Structure and Cognitive Structure 67
 B. Personal Thinking Styles and Communal Thought Styles 69

2.26: Research Utility ... 70
 A. Acceptance and Pursuit .. 70
 B. Evaluation Criteria for Immature Theories 71
 C. Ideas for Experimental Design ... 72
 D. How a ‘False Model’ can be Useful ... 73
 E. Useful Functions of Simplification ... 73

2.27: External Consistency .. 76
 A. Overlapping Domains and Shared Components 76
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Invention of a Domain-Theory or System-Theory</td>
<td>116</td>
</tr>
<tr>
<td>E. Multiple Empirical Constraints and Retroductive Induction</td>
<td>118</td>
</tr>
<tr>
<td>2.53: Conceptually Inspired Invention</td>
<td>119</td>
</tr>
<tr>
<td>A. Analysis-and-Revision</td>
<td>120</td>
</tr>
<tr>
<td>B. Internal Consistency</td>
<td>121</td>
</tr>
<tr>
<td>C. External Relationships</td>
<td>122</td>
</tr>
<tr>
<td>2.6: Experimental Design</td>
<td>123</td>
</tr>
<tr>
<td>2.61: Goal-Directed Experimental Design</td>
<td>124</td>
</tr>
<tr>
<td>A. Knowledge about Theories and Experimental Systems</td>
<td>124</td>
</tr>
<tr>
<td>B. Gathering Data in Early Stages of Development</td>
<td>125</td>
</tr>
<tr>
<td>C. Strategies and Principles for Experimental Design</td>
<td>126</td>
</tr>
<tr>
<td>D. Knowledge of Experimental Techniques</td>
<td>127</td>
</tr>
<tr>
<td>E. Anomaly Resolution</td>
<td>128</td>
</tr>
<tr>
<td>F. Predictive Contrast and Crucial Experiments</td>
<td>129</td>
</tr>
<tr>
<td>G. Heuristic Experiments and Demonstration Experiments</td>
<td>130</td>
</tr>
<tr>
<td>H. Experiments in Problem-Solving Projects</td>
<td>132</td>
</tr>
<tr>
<td>2.62: Taking Advantage of Opportunities</td>
<td>133</td>
</tr>
<tr>
<td>2.63: Thought Experiments</td>
<td>135</td>
</tr>
<tr>
<td>A. Thought Experiments and Physical Experiments</td>
<td>135</td>
</tr>
<tr>
<td>B. Four Types of Thought-Experiments</td>
<td>135</td>
</tr>
<tr>
<td>2.7: Problem Solving, Thought Styles, and Thinking</td>
<td>137</td>
</tr>
<tr>
<td>2.71: Problem Solving in Science</td>
<td>137</td>
</tr>
<tr>
<td>A. Problems</td>
<td>137</td>
</tr>
<tr>
<td>B. Problem-Solving Actions</td>
<td>138</td>
</tr>
<tr>
<td>C. Problem-Solving Projects</td>
<td>138</td>
</tr>
<tr>
<td>D. Action Evaluation</td>
<td>139</td>
</tr>
<tr>
<td>E. Private Evaluation and Public Evaluation</td>
<td>140</td>
</tr>
<tr>
<td>F. Preparation</td>
<td>140</td>
</tr>
<tr>
<td>G. Levels of Problem Solving</td>
<td>141</td>
</tr>
<tr>
<td>H. A 3Ps Model of Science</td>
<td>142</td>
</tr>
<tr>
<td>I. A Basic Theme with Variations</td>
<td>143</td>
</tr>
<tr>
<td>J. Interactions between Stages and Activities</td>
<td>144</td>
</tr>
<tr>
<td>K. Interactions between Levels of Problem Solving</td>
<td>145</td>
</tr>
<tr>
<td>2.72: Thought Styles</td>
<td>146</td>
</tr>
<tr>
<td>A. Definitions</td>
<td>146</td>
</tr>
<tr>
<td>B. Effects on Experiments and Theories, Goals and Procedural Styles</td>
<td>147</td>
</tr>
<tr>
<td>C. Two Metaphors: a Puzzle and a Filter</td>
<td>149</td>
</tr>
<tr>
<td>D. Problem Posing</td>
<td>151</td>
</tr>
<tr>
<td>E. Conflicts in Problem Posing</td>
<td>152</td>
</tr>
<tr>
<td>F. Preparation, Probing, and Persuasion</td>
<td>154</td>
</tr>
<tr>
<td>G. Variety</td>
<td>155</td>
</tr>
</tbody>
</table>
H: Conformity .. 155
I: Change .. 157

2.73: Motivation and Memory, Creativity and Critical Thinking 160
A. Motivation ... 160
B. Memory ... 161
C. Creativity and Critical Thinking ... 162

AN EVALUATION OF ISM AS A DESCRIPTIVE FRAMEWORK 165

2.8: Other Views of Scientific Method .. 165
2.81: Alternative Elaborations and Borrowed Ideas ... 165

2.9: Is ISM a model for “scientific method”? (Part 2) 167
2.91: Description, Prediction, Explanation, Prescription 167
A. Description ... 167
B. Prediction .. 167
C. Explanation .. 169
D. Prescription .. 170
2.92: Is ISM a model for a method? ... 171

CHAPTER 3: An Integrative Analysis of a Problem-Solving Classroom 174
3.11: Selection of a Course for Analysis .. 175
3.12: A Classroom Context for Problem Solving ... 176
A. Effect-to-Cause Problems ... 176
B. The Classroom ... 177

3.2: Methods for the Analysis ... 180
3.21: Activities and Experiences in a Functional Analysis 180
3.22: An Overview of the Analysis .. 182
3.23: Major Instructional Activities .. 183
3.24: Creating a Classroom Atmosphere ... 186
A. Students as Scientists .. 186
B. Stories about Science ... 187
C. Metacognitive Reflection ... 188
D. Social-Intellectual Interactions ... 188
3.25: Genetics Problems in the Classroom ... 189
A. Genetics Construction Kit (GCK) .. 189
B. A Structured Representation of Mendel's Model 191
C. GCK Problems that require Model Revising .. 193
3.26: Science Experiences .. 195
3.27: Three Stages of Analysis ... 197
3.28: Sources of Information for the Analysis ... 198
A. Methods for the Central Activity .. 198
B. Methods for Other Activities .. 200
3.3: The First Phase of Analysis — Student Experiences in Each Activity 201
 3.31: Activity Group #1 — Black Box Model Revising .. 201
 A: Developing (building and revising) Models .. 201
 B: A Student Conference .. 205
 C: Revising Models .. 207
 3.32: Activity-Group #2 — Genetics Phenomena .. 207
 A: The Cookie Analogy .. 208
 B: Human Variations and Human Pedigrees ... 208
 3.33: Activity Group #3 — Initial Models .. 209
 A: Developing a Mendelian Model ... 209
 B: Developing a Model of Meiosis ... 211
 C: GCK Problems without Model Revising .. 213
 3.34: Activity Group #4 — Genetics Model Revising .. 215
 A: GCK Problems that require Model Revising ... 215
 B: Student Conferences .. 227
 3.35: Activity Group #5 — Manuscript Preparation ... 228
 A: Manuscript Writing and Manuscript Revising .. 228
3.4: The Second Phase of Analysis — The Structure of Instruction 235
 3.41: An Introduction to the Second Phase of Analysis .. 235
 3.42. Preparation by Learning Procedures ... 238
 3.43: Preparation by Learning Concepts ... 238
 A. Providing Conceptual Knowledge for Model Revising 238
 B. Simplifying the Process of Analysis-and-Revision 239
 C. Limiting What Students Know About Genetics .. 240
 3.44: Posing Problems ... 242
 A. Posing is done by the Teacher .. 243
 B. Posing is done by Students ... 243
 C. Do Students Pose Problems? .. 245
 3.45: Adjusting the Level of Difficulty ... 246
 A. Why Adjustments are Important .. 246
 B. When to adjust? Before or During Problem Solving 247
 C. The Teacher as a Source of Procedural Knowledge 247
 D. The Teacher as a Source of Conceptual Knowledge 248
 E. The Teacher as an Adjuster of Problem Difficulty 249
 F. The Teacher as a Source of Emotional Support .. 249
 3.46: Helping Students Learn from Their Experience ... 250
 A. The Teacher as a Facilitator of Learning ... 251
 B. Learning by Metacognitive Reflection ... 251
 C. Learning from Other Students .. 252
 3.47: Stories about Science and Scientists .. 253
 A. Stories about Science: Strategies for Problem Solving 254
B. Stories about Science: Having Fun as a Scientist ... 255

3.48: Functional Relationships in the Instruction ... 259
 A. Functional Relationships Within Activities ... 259
 B. Functional Relationships Between Activities .. 262

3.5: Suggestions for Improving the Course ... 265
 3.51: Suggestions by Others ... 266
 3.52: My Suggestions for Improvement ... 268
 A. Supplementing Incomplete or Inauthentic Science Experiences 269
 B. Using ISM in Discussions of Problem-Solving Strategies 271
 C. Using Prediction Overviews ... 273

3.6: Evaluating the ISM-Based Analysis .. 274
 3.61: Understanding the Structure of Instruction ... 274
 3.62: Testing and Improving the Analytical Utility of ISM 276
 A. Testing ISM as a Tool for Instructional Analysis? 276
 B. An Improved Understanding of ISM-Based Analysis? 278
 C. An Improvement in ISM as a Tool for Analysis? 279
 D. Using ISM as part of an Eclectic Analytical Framework? 280

CHAPTER 4: Potential Educational Applications for a Model of ‘Integrated Scientific Method’ .. 282

4.1: Using ISM for Instructional Design .. 282
 4.11: Aesop's Activities .. 283
 4.12: Analysis and Design ... 284

4.2: Using ISM in the Classroom ... 287
 4.21: Learning from Experience .. 287
 4.22: Coping with Complexity .. 290
 4.23: Should Scientific Method be X-Rated? .. 292

4.3: Using ISM for Teacher Education ... 296

4.4: General Thinking Skills and a ‘Wide Spiral’ Curriculum 297
 4.41: A Model for an ‘Integrated Design Method’ ... 297
 4.42: A Wide Spiral Curriculum ... 299
 4.43: In Praise of Variety in Education .. 302

4.5: An Overview of “ISM in Education” .. 304

REFERENCES .. 306

APPENDIX

A1: A Brief History of ISM-Diagrams ... 312

A2: Controversies about Scientific Method .. 316
LIST OF FIGURES AND TABLES

In the Main Body:

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>A Visual Representation of "Integrated Scientific Method"</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Relationships between Objectives A and B</td>
<td>11</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Relationships between Objectives (1, 2, A, B) and Chapters 2, 3 and 4</td>
<td>12</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Four Possibilities for combining Truth Status with Utility Status</td>
<td>100</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Timing Differences for Hypothetico-Deductive Logic and Retroductive Logic.</td>
<td>115</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Relationships between Levels of Problem Solving</td>
<td>145</td>
</tr>
<tr>
<td>Table 1</td>
<td>A simple Activity-and-Experience Grid</td>
<td>180</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Computer Screen showing a Field Population and the progeny from Two Crosses</td>
<td>190</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Mendel's Bible — an external representation for a model of simple dominance, in terms of Objects, States, and Processes</td>
<td>192</td>
</tr>
<tr>
<td>Table 2</td>
<td>Science Experiences, based on a model of ‘Integrated Scientific Method’</td>
<td>196</td>
</tr>
<tr>
<td>Table 3</td>
<td>Science Experiences during the “Black Box Model Revising” activities</td>
<td>230</td>
</tr>
<tr>
<td>Table 4</td>
<td>Science Experiences during the “Genetics Phenomena” activities</td>
<td>231</td>
</tr>
<tr>
<td>Table 5</td>
<td>Science Experiences during the “Initial Models” activities</td>
<td>232</td>
</tr>
<tr>
<td>Table 6</td>
<td>Science Experiences during the “Genetics Model Revising” activities</td>
<td>233</td>
</tr>
<tr>
<td>Table 7</td>
<td>Science Experiences during the “Manuscript Preparation” activities</td>
<td>234</td>
</tr>
<tr>
<td>Figure 9</td>
<td>A Visual Representation of "Integrated Design Method"</td>
<td>298</td>
</tr>
</tbody>
</table>

In the Appendix:

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 10</td>
<td>Four diagrams, at different stages in the development of ISM</td>
<td>312</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Two Types of Range Diagrams for “Politics in Science”</td>
<td>334</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Frequency Graphs for “Politics in Science” (x for imaginary analysis)</td>
<td>336</td>
</tr>
<tr>
<td>Figure 13</td>
<td>A Method for showing Approximate Frequencies (for imaginary analysis)</td>
<td>336</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Unwarranted Implications occur if Examples do not accurately represent Population (for imaginary analysis)</td>
<td>337</td>
</tr>
<tr>
<td>Figure 15</td>
<td>An external representation for a model of simple dominance</td>
<td>354</td>
</tr>
<tr>
<td>Figure 16</td>
<td>Data and Theory for codominance in Round 1</td>
<td>355</td>
</tr>
<tr>
<td>Figure 17</td>
<td>Data and Theory for multiple alleles in Round 2</td>
<td>356</td>
</tr>
<tr>
<td>Figure 18</td>
<td>Data and Theory for sex linkage in Round 3</td>
<td>358</td>
</tr>
<tr>
<td>Figure 19</td>
<td>Data and Theory for autosomal linkage in Round 4</td>
<td>359</td>
</tr>
<tr>
<td>Figure 20</td>
<td>A Super-Punnett Overview for a “3 alleles per individual” theory</td>
<td>363</td>
</tr>
<tr>
<td>Figure 21</td>
<td>A Summary of Research on GCK-based Problem Solving</td>
<td>365</td>
</tr>
</tbody>
</table>
References

Genetic Construction Kit. COMpress Software, Wentworth, NH.

Philadelphia: Saunders.

