Table 1: a simple Activity-and-Experience Grid

	student activities				
science experiences					
$\# 1$	$\# 2$	$\# 3$	$\# 4$	$\# 5$	
A. design experiment	-	-	-	yes	yes
B. do experiment, make observations	yes	yes	-	-	yes
C. hypothetico-deductive reasoning	-	yes	yes	-	yes
D. invent theories	-	-	yes	-	yes

Table 2: Science Experiences, based on a model of 'Integrated Scientific Method'

	SCIENCE EXPERIENCES	science experiences are discussed in sections:
1a	- Preparation for content, process; backward-reaching, forward-reaching	$2.71_{\mathrm{F}}, 2.72_{\mathrm{B}, \mathrm{F}}, 2.73_{\mathrm{B}}$
1b	- Posing of an area to study, and of constraints on a solution	$2.71{ }_{\text {A-D }}, 2.72_{\text {B-E }}$
1c	- Probing pursuit: invent, evaluate, and execute probing-actions	$2.71_{\mathrm{B}, \mathrm{D}}, 2.72_{\mathrm{F}}$
2a	SELECT an old theory (observations + retroductive logic + ...)	2.51
2b	INVENT a new theory (observations + retroductive logic + ...)	2.52-2.53
3a	DESIGN EXPERIMENT (find gaps, do thought experiments,...)	$2.61-2.62,2.63 \mathrm{~A}$
3b	DO EXPERIMENT, make OBSERVATIONS	2.11 E
4a	theories + system \rightarrow PREDICTION (using "if-then" deductive logic)	$2.11_{\text {D }}, 2.11_{\text {B-C }}$
4b	estimate degree-of-AGREEMENT, by comparing obs with T-predictions	$2.12 \mathrm{~A}, 2.52$
4 c	estimate degree-of-CONTRAST, compare obs-vs-predn for T \& alt-Ts	$2.12_{\text {B }}, 2.61_{\mathrm{F}}$
4d	PREVIOUS agreement-and-contrast (empirical evaltn for previous expmts)	$2.12 \mathrm{C}, 2.52 \mathrm{E}$
5a	INTERNAL characteristics of Theory (check T's ontology, systematicity,...)	2.21-2.26
5b	EXTERNAL relations with other Ts (domain overlap, shared components)	2.27-2.28
6 a	metaphysical \& ideological	2.31 B
6b	psychological, practical, authority	$2.31 \mathrm{~A}, \mathrm{C}$
7 a	EVALUATION \rightarrow "conclusion" Δ in T-status? retain revise reject	2.42
7b	- Persuasion (of self, research group, or outsiders)	$2.61{ }_{\mathrm{G}}, 2.71_{\mathrm{E}}, 2.72_{\mathrm{C}, \mathrm{F}}$

abbreviations: obs = observations, $\mathrm{T}=$ theory, predn $=$ prediction, alt $=$ alternative, evaltn $=$ evaluation, expmts $=$ experiments,
$\Delta=$ change

Table 3: Science Experiences during the "Black Box Model Revising" activities

	$\mathbf{3 . 3 1} \mathrm{A}$ Black Box model-building	3.31B Black Box conference	$\mathbf{3 . 3 1}_{\mathrm{C}}$ Black Box model-revising
- Preparation for content, process; backward-reaching, forward-reaching	backward, NO ? forward. YES	forward: listen to others' ideas	backward: yes forward: ves
- Posing of an area to study, and of constraints on a	NO (area) yes (constraints)	NO yes	NO yes
- Probing pursuit: invent, evaluate, and execute probing-actions	YES ! manvdecicions	YES for persuasion	YES
SELECT an old theory (observations + retroductive logic + ...)	yes, but old Ts are not sufficient	own model from first day	begin w own T or out-group T
INVENT a new theory (observations + retroductive logic + ...)	T-building and T-revision	is possible but is not expected	by revision of existing theory
DESIGN EXPERIMENT (find gaps, do thought experiments....)	yes; eventually is guided by T	to support own or to challenge	yes
DO EXPERIMENT, make OBSERVATIONS	yes	to demonstrate,	yes
theories + system \rightarrow PREDICTION (using "if-then" deductive logic)	usually done after experiment	as explanation, or as	yes
estimate degree-of-AGREEMENT, by comparing obs with T-predictions	yes	yes, this is important	yes
estimate degree-of-CONTRAST, compare obs-vs-predn for T \& alt-Ts	competitive Ts of own group	compare own T with other	yes
PREVIOUS agreement-and-contrast (empirical evaltn for previous expmts)	as experiments accumulate	yes, all data is considered	yes, from all 3 days
INTERNAL characteristics of Theory (check T's ontology, svstematicity....)	ask "Is it possible?"	yes	yes
EXTERNAL relations with other Ts (domain overlap, shared components)	check w known physical laws	yes	yes
metaphysical \& ideological	assumption of consistency	consistency	yes
psychological, practical, authority	relations with own group, Sue	relations w all students \& Sue	yes
EVALUATION \rightarrow "conclusion" Δ in T-status? retain revise reject	yes, through whole process	of own T and other Ts	to decide on a "final model"
- Persuasion (of self, research group, or outsiders)	persuasion of self \& groupers	persuasion of others, mainly	yes

abbreviations: obs = observations, $\mathrm{T}=$ theory, predn $=$ prediction, alt $=$ alternative, evaltn $=$ evaluation, expmts $=$ experiments, $\Delta=$ change; $\mathrm{w}=$ with

Table 4: Science Experiences during the "Genetics Phenomena" activities

	3.32_{A} cookie analogy	3.32_{B} human variations	3.32_{C} human pedigrees
- Preparation for content, process; backward-reaching, forward-reaching	learn concepts and terms	learn concepts and terms	learn concepts and terms
- Posing of an area to study, and of constraints on a solution	yes (questions)	yes (questions)	yes (questions)
- Probing pursuit: invent, evaluate, and execute probing-actions	-	-	whether to interpret
SELECT an old theory (observations + retroductive logic + ...)	-	-	-
INVENT a new theory (observations + retroductive logic + ...)	-	-	finding patterns in the data
DESIGN EXPERIMENT (find gaps, do thought experiments,...)	variations on a basic recipe	-	-
DO EXPERIMENT, make OBSERVATIONS	bake cookies, examine them	make observations	(second-hand data is used)
theories + system \rightarrow PREDICTION (using "if-then" deductive logic)	-	-	-
estimate degree-of-AGREEMENT, by comparing obs with T-predictions	-	-	-
estimate degree-of-CONTRAST, compare obs-vs-predn for T \& alt-Ts	-	-	-
PREVIOUS agreement-and-contrast (empirical evaltn for previous expmts)	-	-	-
INTERNAL characteristics of Theory (check T's ontology, systematicity,...)	-	-	-
EXTERNAL relations with other Ts (domain overlap, shared components)	-	-	-
metaphysical \& ideological	-	-	-
psychological, practical, authority	class bonding: milk \& cookies!	more bonding	-
EVALUATION \rightarrow "conclusion" Δ in T-status? retain revise reject delay	-	-	-
- Persuasion (of self, research group, or outsiders)	-	-	-

abbreviations: obs = observations, $\mathrm{T}=$ theory, predn = prediction, alt $=$ alternative, evaltn $=$ evaluation, expmts $=$ experiments, $\Delta=$ change $; \mathrm{w}=$ with

Table 5: Science Experiences during the "Initial Models" activities

	$\mathbf{3 . 3 3}_{\mathrm{A}}$ building a model of dominance	$\mathbf{3 . 3 3}_{\mathrm{B}}$ building a model of meiosis	$\mathbf{3 . 3 3}_{\mathrm{C}}$ GCK practicing and exam
- Preparation for content, process; backward-reaching, forward-reaching	preparation for model revising	preparation for model revising	preparation for model revising
- Posing of an area to study, and \qquad	$\begin{aligned} & \text { NO } \\ & \text { yes } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { ves } \\ & \hline \end{aligned}$
- Probing pursuit: invent, evaluate, and execute probing-actions	minimal choices about	minimal choices about	yes, students decide actions
SELECT an old theory (observations + retroductive logic + ...)	assumed to be not available	mitosis; but it is not adequate	yes, but there is only one option
INVENT a new theory (observations + retroductive logic + ...)	yes, by guided construction	yes, by guided construction	retroduction only for system
DESIGN EXPERIMENT (find gaps, do thought experiments....)	watch how an expert does it	field study? ves	yes, but within narrow limits
DO EXPERIMENT, make OBSERVATIONS	peas provided; classify \&	field exprmts \rightarrow observations	yes
theories + system \rightarrow PREDICTION (using "if-then" deductive logic)	yes	yes	yes
estimate degree-of-AGREEMENT, by comparing obs with T-predictions	major factor in development	major factor in development	yes (no anomalies)
estimate degree-of-CONTRAST, compare obs-vs-predn for T \& alt-Ts	"blending" T is a competitor	mitotic model is a competitor	not possible: no alternative
PREVIOUS agreement-and-contrast (empirical evaltn for previous expmts)	yes	yes	yes
INTERNAL characteristics of Theory (check T's ontology, systematicity....)	yes in Mendel	yes	understanding
EXTERNAL relations with other Ts (domain overlap, shared components)	this is not a major factor vet	yes; relations with	no; has been done already
metaphysical \& ideological	assumption of consistency	consistency	sophisticated "consistency"
psychological, practical, authority	collaborations w Mendel....	collaboration w group \& class	social w group and w teacher
EVALUATION \rightarrow "conclusion" Δ in T-status? retain revise reject	accept Mendel's model	accept meiotic model	no reason not to retain
- PerRUASION (of self, research group, or outsiders)	by empirical + authorities...	by empirical + conceptual $+\ldots$	re: exp-system, using GCK....

abbreviations: obs = observations, $\mathrm{T}=$ theory, $\operatorname{predn}=$ prediction, alt $=$ alternative, evaltn = evaluation, expmts $=$ experiments, $\Delta=$ change; $\mathrm{w}=$ with, $\exp =\operatorname{experimental}$

Table 6: Science Experiences during the "Genetics Model Revising" activities

	$\begin{gathered} \mathbf{3 . 3 4}_{\mathrm{A}} \text { : } \\ \text { revising the } \\ \text { existing model(s) } \end{gathered}$	$\mathbf{3 . 3 4}_{\mathbf{B}}:$ conference to discuss models that are invented
- Preparation for content, process; backward-reaching, forward-reaching	all preceding activities are to prepare for this	GCK work is a preparation for this
- Posing of an area to study, and \qquad	$\begin{gathered} \mathrm{NO} \\ \text { ves } \end{gathered}$	NO ves (goal is persuasion)
- Probing pursuit: invent, evaluate, \qquad	YES, many decisions about pursuit-actions	preliminary planning and quick improvisation
SELECT an old theory (observations + retroductive logic + ...)	in Round 1, no options; later, students can choose	as starting point to show how new T was
INVENT a new theory (observations + retroductive logic $+\ldots$..)	this is the focal point of the entire course: YES	presented model usually does not need revising
DESIGN EXPERIMENT (find gaps, do thought experiments....)	students can only decide which parents to cross	for own presentation, or to challenge others
DO EXPERIMENT, make OBSERVATIONS	GCK provides data, students observe \& use it	planned by presenters, or due to challenge
theories + system \rightarrow PREDICTION (using "if-then" deductive logic)	for old or new Ts, to explain or predict	prediction must be done BEFORE an experiment
estimate degree-of-AGREEMENT, by comparing obs with T-predictions	this is usually the major factor in T-evaluation	this is most important factor in persuasion
estimate degree-of-CONTRAST, compare obs-vs-predn for T \& alt-Ts	students can recognize "crucial experiments"	if needed to compare competitive models
PREVIOUS agreement-and-contrast (empirical evaltn for previous expmts)	all data is considered	yes
INTERNAL characteristics of Theory (check T's ontology, systematicity....)	yes	yes
EXTERNAL relations with other Ts (domain overlap, shared components)	yes	yes
metaphysical \& ideological	consistency expected, if sophistication \& patience	consistency
psychological, practical, authority	social interactions; also practical + authority	w students inside and outside group, and Sue
EVALUATION \rightarrow "conclusion" Δ in T-status? retain revise reject delay	reject old model(s), maybe accept new model	reject the old model? accept the new model?
- Persualion (of self, research group, or outsiders)	yes, at several levels	external persuasion is now the main event

abbreviations: obs = observations, $\mathrm{T}=$ theory, predn $=$ prediction, alt $=$ alternative, evaltn = evaluation, expmts $=$ experiments, $\Delta=$ change; $w=$ with

Table 7: Science Experiences during the "Manuscript Preparation" activities

	3.35
Manuscript Writing and Manuscript Revising	

abbreviations: obs = observations, $\mathrm{T}=$ theory, predn = prediction, alt $=$ alternative, evaltn $=$ evaluation, expmts $=$ experiments, $\Delta=$ change

Table 8: Functional Relationships between and within Instructional Activities

note: This table, with the page in "landscape" orientation
so you can see the entire table, is in another PDF-file.

	$3.31 \mathrm{AC}$ Black Box model	3.31_{B} Black Box con-	$3.32 \mathrm{AB}$ cookies variations pedigrees	$3.33 \mathrm{~A}$ construct Mendel model	3.33_{B} construct meioticm odel	$3.33 \mathrm{C}$ GCK with no revising	$\begin{gathered} 3.34 \mathrm{~A} \\ \text { GCK } \\ \text { model } \\ \text { revising } \end{gathered}$	$\begin{gathered} 3.34 \mathrm{~B} \\ \text { GCK } \\ \text { con- } \\ \text { ference } \end{gathered}$	3.35 manuscript
sackward preparation	none	model revising					all prior activities	model revising	model revising
forward preparation	process		content	content process	content process	content GCK	for persuasion		
Posing	no, yes						no, yes		yes, yes
Probing for PSolving	YES !	prsuasn		guided	guided		YES !	prsuasn	prsuasn
Model Selection	old M				mitosis		old Ms		
Model Invention	MODEL			model	model	-	MODEL	for	
Expmtal Design	physical	for					limited	for	for
Expmt \& Obs	expmt		obs	obs	remember	mental	MENTAL		
Prediction	w new	pre-dict					w new	pre-dict	
Agreement	main	main		main	main	agreement	main	main	main
Predictive Contrast	criterion	argument		criterion	criterion	no alt-Ms	criterion	argument	argument
Previous Expmts									
Internal Consistency									
External Consistency	with laws						w old Ms		
Metaphysical						cnsstcy			
Personal / Authority			bonding						
Conclusion	by group	by others		as class	as class		by group	by others	by others
Persuasion	in group	external		by tchr	by tchr		in group	external	external

abbreviations: prsuasn = persuasion, $\mathrm{M}=$ model, $\mathrm{MB}=$ Mendel's Bible, expmt = experiment, obs = observation, alt $=$ alternative,
cnsstcy $=$ consistency, motivn $=$ motivation, tchr $=$ teacher

Figure 15: an external representation for a model of simple dominance.

OView 0-A: theory for dominance

Punnet Squares (for genotypes) and phenotypes

	$\begin{gathered} \text { aa } \\ \text { A } \end{gathered}$	$\begin{gathered} \text { ab } \\ \text { A } \end{gathered}$	$\begin{gathered} \text { bb } \\ \text { B } \end{gathered}$
aa	aa aa aa aa	aa ab aa ab	ab ab $a b a b$
A	$\begin{array}{ll} \mathrm{A} & \mathrm{~A} \\ \mathrm{~A} & \mathrm{~A} \\ \hline \end{array}$	$\begin{array}{ll} & \text { A } \\ \text { A } & \text { A } \end{array}$	$\begin{array}{ll} A & A \\ A & A \end{array}$
ab	aa aa ba ba	aa ab ba bb	ab ab bb bb
A	$\begin{array}{ll} \mathrm{A} & \mathrm{~A} \\ \mathrm{~A} & \mathrm{~A} \end{array}$	$\begin{array}{ll} \mathrm{A} & \mathrm{~A} \\ \mathrm{~A} & \mathrm{~B} \end{array}$	$\begin{array}{ll} & \text { A } \\ \text { B } & \text { B } \end{array}$
bb	ba ba ba ba	ba bb ba bb	bb bb bb bb
B	$\begin{array}{ll} A & A \\ A & A \end{array}$	$\begin{array}{ll} \text { A } & \text { B } \\ \text { A } & \text { B } \end{array}$	$\begin{array}{ll} B & B \\ B & B \end{array}$

OView 0-B: statistics for phenotypes

OView 0-C: the 6 "cross
OView 0-C: the 6 "cross
possibilities"

	$\mathbf{a a}$ A	$\mathbf{a b}$ A	$\mathbf{b b}$ B		
$\mathbf{a a}$ A	100%	A	100%	A	100%

	aa A	$\mathbf{a b}$ A	$\mathbf{b b}$ B	
$\mathbf{a a}$ A	$100 \% \mathrm{~A}$	100%	A	100%

OView 0-D:
theory-predicted data for dominance

	father A	father B
$\begin{gathered} \text { mother } \\ \text { A } \end{gathered}$	$\begin{gathered} 100 \% \mathrm{~A} \\ \text { or } \end{gathered}$	$\begin{gathered} 100 \% \mathrm{~A} \\ \text { or } \end{gathered}$
	75\% A	50\% A
	25\% B	50\% B
$\begin{gathered} \text { mother } \\ \text { B } \end{gathered}$	100\% A	100\% B
	or	
	50\% A	
	50\% B	

Figure 16: Data and Theory for codominance in Round 1

OView 1-A: data and anomalies

	C	D	E	
C	100\% C	50\% C	100\% D	
		50\% D		
D	50\% C	25\%		
	50\% D	50\%	50\%	
		25\% E	50\%	
E	100\% D	50\% D		
		50\% E	100\%	

In addition, there are "missing results";
DxD never produces $100 \% \mathrm{D}$, and
no 'like with like' cross (CxC, DxD, ExE) ever produces a 75-25 mix.

OView 1-B: theory for codominance

	$\begin{gathered} \mathbf{c c} \\ \mathrm{C} \end{gathered}$	$\begin{gathered} \mathbf{c e} \\ \mathrm{D} \end{gathered}$	$\begin{gathered} \text { ee } \\ \mathrm{E} \\ \hline \end{gathered}$
cc	CC CC CC Cc	Cc ce CC ce	ce ce ce ce
C	$\begin{array}{ll} \mathrm{C} & \mathrm{C} \\ \mathrm{C} & \mathrm{C} \end{array}$	$\begin{array}{ll} C & D \\ C & D \end{array}$	$\begin{array}{ll} D & D \\ D & D \end{array}$
ce	CC Cc ec ec	Cc ce ec ee	ce ce ee ee
D	$\begin{array}{ll} C & C \\ D & D \\ \hline \end{array}$	$\begin{array}{ll} C & D \\ D & E \end{array}$	$\begin{array}{ll} \text { D } & \text { D } \\ \text { E } & \text { E } \end{array}$
ee	ec ec ec ec	ec ee ec ee	ee ee ee ee
E	$\begin{array}{ll} \mathrm{D} & \mathrm{D} \\ \mathrm{D} & \mathrm{D} \\ \hline \end{array}$	$\begin{array}{ll} \text { D } & \text { E } \\ \text { D } & \text { E } \\ \hline \end{array}$	$\begin{array}{ll}\text { E } & \mathrm{E} \\ \mathrm{E} & \mathrm{E}\end{array}$

OView 1-C: statistics for phenotypes

	cc	ce	ee			
	C	D	E			
$\mathbf{c c}$	100%	C	50%	C		
C		50%	D	100%	D	
$\mathbf{c e}$	50%	C	25%	C		
D	50%	D	50%	D	50%	D
		25%	E	50%	E	
$\mathbf{e e}$						
E	100%	D	50%	D		

Figure 17: Data and Theory for multiple alleles in Round 2

OView 2-B: data for codominance
OView 2-A: data for dominance

	A	B		
	100%	A	100%	A
A	or	or		
	75%	A	50%	A
	25%	B	50%	B
	100%	A		
B	or			
	50%	A	100%	B
	50%	B		

	$\mathbf{c c}$	$\mathbf{c e}$	$\mathbf{e e}$		
	C	D	E		
$\mathbf{c c}$	100%	C	50%	C	
C		50%	D	100%	D
$\mathbf{c e}$	50%	C	25%	C	
D	50%	D	50%	D	50%
			D		
	25%	E	50%	E	
$\mathbf{e e}$					
E	100%	D	50%	D	
		50%	E	100%	E

OView 2-C: data for multiple alleles, and clues for anomaly resolution

	R	0	S	T
R	100\% R	50\% R	100\% 0	100\% R
	or	50\% O	or	or
	75\% R	or	50\% R	50\% R
	25\% T	50\% R	50\% O	50\% T
		25\% O	or	
		25\% S	50\% O	
			50\% S	
			or	
			25\% R	
			25\% O	
			25\% S	
0			25\%	
		25\% R	25\% R	50\% R
		50\% O	25\% O	50\% S
		25\% S	50\% S	
			or	
			50\% O	
			50\% S	
S			100\% S	100\% S
			or	or
			75\% S	50\% S
			25\% T	50\% T
T				100\% T

Figure 17 (continued)

OView 2-D: theory for multiple alleles

	$\begin{gathered} \text { rr } \\ \text { R } \end{gathered}$	$\begin{gathered} r t \\ R \end{gathered}$	$\begin{gathered} \text { rs } \\ 0 \end{gathered}$	$\begin{gathered} \text { Ss } \\ \text { S } \end{gathered}$	$\begin{gathered} \text { st } \\ \text { s } \end{gathered}$	$\begin{gathered} \mathrm{tt} \\ \mathrm{~T} \end{gathered}$
rr	rr rr	rr rt	rr rs	rs rs	rs rt	rt rt
R	rr rr	rr rt	rr rs	rs rs	rs rt	rt rt
rt		rr rt	rr rs	rs rs	rs rt	rt rt
R		tr tt	tr ts	ts ts	ts tt	tt tt
rs			rr rs	rs rs	rs rt	rt rt
0			sr SS	SS SS	ss st	st st
ss				SS SS	ss st	st st
S				SS SS	ss st	st st
st					ss st	st st
S					ts tt	tt tt
tt						tt tt
T						tt tt

OView 2-E: phenotypes for one codominance, "t loses"

	$\begin{gathered} \mathrm{rr} \\ \mathrm{R} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{rt} \\ \mathrm{R} \\ \hline \end{gathered}$	$\begin{gathered} \text { rs } \\ 0 \end{gathered}$	$\begin{gathered} \text { ss } \\ \text { S } \end{gathered}$	$\begin{gathered} \text { st } \\ \text { S } \end{gathered}$	$\begin{gathered} \mathrm{tt} \\ \mathrm{~T} \end{gathered}$	
rr	R R	R R	R O	0			R
R	R R	R R	R O	0	0 R		R
rt		R R			0	R	R
R		R T	R S	S	S	T	T
rs			R O	0	0	R	R
0			0 S		S	S	S
ss						S	S
S							S
st					S	S	S
S							T
T							
T							

OView 2-F: the 7 types of inhritance sub-patterns for 3 alleles

	3 varns	3 varns	4 varns	4 varns	4 varns	5 varns	6 varns
	dominance hierarchica 1	dominance $\mathrm{r}-\mathrm{p}-\mathrm{s}$	codominance t wins	codominance t loses	codominance t splits	codominance for 2 of 3	codominance for 3 of 3
rr	R	R	R	\mathbf{R}	R	R	R
ss	S	S	S	\mathbf{S}	S	S	S
tt	T	T	T	\mathbf{T}	T	T	T
rs	R	R	RS	$\mathbf{R S}$	RS	RS	RS
st	S	S	T	\mathbf{S}	S	ST	ST
rt	R	T	T	\mathbf{R}	T	R	RT

Figure 18: Data and Theory for sex linkage in Round 3

OView 3-A: ratios for all offspring, anomalies w.r.t. dominance

	H	Z
	$100 \% \mathrm{H}$	$100 \% \mathrm{H}$
H	or	or
	$75 \% \mathrm{H}$	$50 \% \mathrm{H}$
	$25 \% \mathrm{Z}$	$50 \% \mathrm{Z}$
	$50 \% \mathrm{H}$	$100 \% \mathrm{Z}$
Z	$50 \% \mathrm{Z}$	
	but not	
	$100 \% \mathrm{H}$	

OView 3-B: ratios for females \& males; anomalies w.r.t. dominance

	H	Z
	$100 \% \mathrm{Hf}$	$100 \% \mathrm{Hf}$
	$100 \% \mathrm{Hm}$	$100 \% \mathrm{Hm}$
	Or	Or
	$100 \% \mathrm{Hf}$	$50 \% \mathrm{Hf}$
	$0 \% \mathrm{Zf}$	$50 \% \mathrm{Zf}$
	$50 \% \mathrm{Hm}$	$50 \% \mathrm{Hm}$
	$50 \% \mathrm{Zm}$	$50 \% \mathrm{Zm}$
Z	$100 \% \mathrm{Hf}$	$100 \% \mathrm{Zf}$
	$100 \% \mathrm{Zm}$	$100 \% \mathrm{Zm}$

OView 3-C: theory for dominance

	$\begin{gathered} \mathbf{h h} \\ \mathrm{H} \end{gathered}$	$\begin{gathered} \mathbf{h z} \\ \mathrm{H} \end{gathered}$	$\begin{gathered} \mathbf{z ~ z} \\ \text { Z } \end{gathered}$
hh	hh hh	hh hz	hz hz
	hh hh	hh hz	hz hz
H	H H	H H	H H
	H H	H H	H H
hz	hh hh	hh hz	hz hz
	zh zh	zh zz	zz zz
H	H H	H H	H H
	H H	H Z	Z Z
zz	zh zh	zh zz	zz zz
	zh zh	zh zz	zz zz
Z	H H	H Z	Z Z
	H H	H Z	Z

OView 3-D: theory for sex-linkage

	h-	$\begin{gathered} \mathrm{z}- \\ \mathrm{Z} \end{gathered}$
hh	hh h-	hz h-
	hh h-	hz h-
H	Hf Hm	Hf Hm
	Hf Hm	Hf Hm
hz	hh h-	hz h-
	zh z-	zz z-
H	Hf Hm	Hf Hm
	Hf Zm	Zf Zm
zz	zh z-	zz z-
	$\mathrm{zh} \mathrm{z-}$	zz z-
Z	Hf Zm	Zf Zm
	Hf Zm	Zf Zm

Figure 19: Data and Theory for autosomal linkage in Round 4

OView 4-A: Punnett Squares for the same phenotype-cross (AI x AI), using two different genotype-crosses: "aaii x aaii" on the left side, "abin x abin" on the right side.

		$\begin{aligned} & \text { AI } \\ & \text { (ab } \\ & \text { in) } \end{aligned}$			
		ai	an	bi	bn
	ai	$\begin{gathered} \text { aa ii } \\ \text { AI } \end{gathered}$	$\begin{gathered} \text { aa in } \\ \text { AI } \end{gathered}$	$\begin{gathered} \mathrm{ab} \text { ii } \\ \text { AI } \end{gathered}$	ab in AI
AI	an	$\begin{gathered} \text { aani } \\ \text { AI } \end{gathered}$	$\begin{gathered} \text { aa nn } \\ \text { AN } \end{gathered}$	$\begin{gathered} \mathrm{ab} \mathrm{ni} \\ \mathrm{AI} \end{gathered}$	$a b \mathrm{nn}$ AN
(ab in)		$\begin{gathered} \text { ba ii } \\ \text { AI } \end{gathered}$	$\begin{gathered} \hline \mathrm{ba} \text { in } \\ \mathrm{AI} \\ \hline \end{gathered}$	bb ii BI	bb in BI
		$\begin{gathered} \hline \text { ba ni } \\ \text { AI } \end{gathered}$	$\begin{gathered} \text { ba nn } \\ \text { AN } \end{gathered}$	bb ni BI	bb nn BN

ratio ($\mathrm{AI}: \mathrm{AN}: \mathrm{BI}: \mathrm{BN}$)
is 9:3:3:1

OView 4-B: Phenotype data, predicted using Punnett Squares, for all genotype combinations.
Data shows ratios for AI:AN:BI:BN. For example, for AIxAI one of the 16 cells is "6200" to show the 6:2:0:0 ratio, with $75 \% \mathrm{AI}, 25 \% \mathrm{AN}, 0 \% \mathrm{BI}$, and $0 \% \mathrm{BN}$.
The shaded cells are predictions that, with linkage, do not match observations.

		AI aa ii	AI aa in	AI ab ii	$\begin{aligned} & \text { AI } \\ & \text { ab } \\ & \text { in } \end{aligned}$	AN aa nn	AN ab nn	BI bb ii	$\begin{aligned} & \text { BI } \\ & \text { bb } \\ & \text { in } \end{aligned}$	
	aa ii	8000	8000	8000	8000	8000	8000	8000	8000	8000
AI	aa in	8000	6200	8000	6200	4400	4400	8000	6200	4400
AI	ab ii	8000	8000	6020	6020	8000	6020	4040	4040	4040
AI	ab in	8000	6200	6020	9331	4400	3311	4040	3131	2222
AN	aa nn	8000	4400	8000	4400	0800	0800	8000	4400	0800
AN	ab nn	8000	4400	6020	3311	0800	0602	4040	2222	0404
BI	bb ii	8000	8000	4040	4040	8000	4040	0080	0080	0080
BI	bb in	8000	6200	4040	3131	4400	2222	0080	0062	0044
BN	bb nn	8000	4400	4040	2222	0800	0404	0080	0044	0008

OView 4-C: Punnett Squares, if there is autosomal linkage, for the four anomalous crosses. The bold numbers show the phenotype ratios for each area; non-bold numbers show the ratios that occur if there is no linkage, when all cells are combined.

OView 4-D: Dominance with autosomal linkage; an explanation for anomalies in OView 4D. The shading shows parental genotypes that produce different gametes if there is linkage, and the cross-results that (as shown in OView 4-D) are anomalous.

	AI aa ii	AI aa in	AI ab ii	AI ab in	AI ab in	AN aa nn	AN ab nn	$\begin{aligned} & \mathrm{BI} \\ & \mathrm{bb} \\ & \mathrm{ii} \end{aligned}$	BI bb in	BN bb nn
	ai ai	$\begin{aligned} & \text { ai } \\ & \text { an } \end{aligned}$	$\begin{aligned} & \text { ai } \\ & \text { bi } \end{aligned}$	$\begin{aligned} & \mathrm{ai} \\ & \mathrm{bn} \end{aligned}$	an bi	$\begin{aligned} & \text { an } \\ & \text { an } \end{aligned}$	$\begin{aligned} & \text { an } \\ & \text { bn } \end{aligned}$	$\begin{aligned} & \mathrm{bi} \\ & \mathrm{bi} \end{aligned}$	$\begin{aligned} & \mathrm{bi} \\ & \text { bn } \end{aligned}$	$\begin{aligned} & \text { bn } \\ & \text { bn } \end{aligned}$
$\begin{aligned} & \hline \text { ai } \\ & \text { ai } \\ & \hline \end{aligned}$	8000	8000	8000	8000	8000	8000	8000	8000	8000	8000
$\begin{aligned} & \text { ai } \\ & \text { an } \end{aligned}$	8000	6200	8000	6200	6200	4400	4400	8000	6200	4400
$\begin{aligned} & \text { ai } \\ & \text { bi } \end{aligned}$	8000	8000	6020	6020	6020	8000	6020	4040	4040	4040
$\begin{aligned} & \text { ai } \\ & \text { bn } \end{aligned}$	8000	6200	6020	6002	4220	4400	4202	4040	4022	4004
$\begin{aligned} & \mathrm{an} \\ & \mathrm{bi} \\ & \hline \end{aligned}$	8000	6200	6020	4220	4220	4400	2420	4040	2240	0440
an	8000	4400	8000	4400	4400	0800	0800	8000	4400	0800
$\begin{aligned} & \hline \text { an } \\ & \text { bn } \end{aligned}$	8000	4400	6020	4202	2420	0800	0602	4040	2222	0404
$\begin{aligned} & \hline \mathrm{bi} \\ & \mathrm{bi} \\ & \hline \end{aligned}$	8000	8000	4040	4040	4040	8000	4040	0080	0080	0080
$\begin{aligned} & \hline \mathrm{bi} \\ & \mathrm{bn} \end{aligned}$	8000	6200	4040	4022	2240	4400	2222	0080	0062	0044
$\begin{aligned} & \mathrm{bn} \\ & \mathrm{bn} \\ & \hline \end{aligned}$	8000	4400	4040	4004	0440	0800	0404	0080	0044	0008

OView 4-E: This shows why the results with no linkage (on the left, as in OView 4-A) are the same as the overall results with linkage (on the right, as in OView 4-C). 4 of 16 results (in 4-A) can occur with the "\#1" set of linked parents (in 4-C); the other 12 results (in 4-A) occur with the other three parental crosses in 4-C.

(ab in)					(ab in)					
	ai	an	bi	bn			ai	bn	an	bi
ai	aa ii	aa in	ab ii	ab in		ai	aa	ab	aa	ab
	\#1	2	2	\#1			ii	in	in	ii
a an	aa ni	aa nn	ab ni	ab nn			\#1	\#1	2	2
b	3	4	4	3	a	bn	ba	bb	ba	bb
i bi	ba ii	ba in	bb ii	bb in	b		ni	nn	nn	ni
n	3	4	4	3			\#1	\#1	2	2
bn	ba ni	ba nn	bb ni	bb nn	i	an	aa	ab	aa	ab
	\#1	2	2	\#1	n		ni	nn	nn	ni
							3	3	4	4
						bi	ba	bb	ba	bb
							ii	in	in	ii
							3	3	4	4

OView 4-F: Comparing predictions (from 4-A or 4-B) with observations (from 4-C or 4-D). Bold print shows anomalies: ratios that (at left) are predicted but not observed or ratios that (at right) are observed but not predicted.
predictions

	$A I$	$A N$	$B I$	$B N$
	8000	8000	8000	8000
AI	6200	4400	6200	4400
	6020	6020	4040	4040
	$\mathbf{9 3 3 1}$	$\mathbf{3 3 1 1}$	$\mathbf{3 1 3 1}$	$\mathbf{2 2 2 2}$
	8000	0800	8000	0800
AN	4400	0602	4400	0404
	6020		4040	
	$\mathbf{3 3 1 1}$		2222	
	8000	8000	0080	0080
BI	6200	4400	0062	0044
	4040	4040		
	$\mathbf{3 1 3 1}$	2222		
BN	8000	0800	0080	0008
	4400	0404	0044	
	$\mathbf{2 2 2 2}$			

observations

	AI	AN	BI	BN
	8000	8000	8000	8000
	6200	4400	6200	4400
AI	6020	6020	4040	4040
	$\mathbf{4 2 2 0}$	$\mathbf{4 2 0 2}$	$\mathbf{4 0 2 2}$	$\mathbf{4 0 0 4}$
	$\mathbf{6 0 0 2}$	$\mathbf{2 4 2 0}$	$\mathbf{2 2 4 0}$	$\mathbf{0 4 4 0}$
	8000	0800	8000	0800
	4400	0602	4400	0404
AN	6020		4040	
	$\mathbf{4 2 0 2}$		2222	
	$\mathbf{2 4 2 0}$			
	8000	8000	0080	0080
	6200	4400	0062	0044
BI	4040	4040		
	$\mathbf{4 0 2 2}$	2222		
	$\mathbf{2 2 4 0}$			
	8000	0800	0080	0008
	4400	0404	0044	
BN	4040			
	$\mathbf{4 0 0 4}$			
	$\mathbf{0 4 4 0}$			

Figure 19 (continued)

OView 4-G: Predicted results for phenotype crosses, based on the data in OView 0-A. The numbers shows the predicted percentages of B and N for each trait-cross. For example, for AxA there is a " 25 or 0 " to show that the predicted result is "either 25% B (and therefore $75 \% \mathrm{~A}$) or $0 \% \mathrm{~A}$ (and 100% B)."

| | AI | AN | BI | BN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AI | AxA: 25 or 0 | AxA: 25 or 0 | AxB: 50 or 0 | AxB: 50 or 0 |
| | IxI: 25 or 0 | IxN: 50 or 0 | IxI: 25 or 0 | IxN: 50 or 0 |
| AN | AxA: 25 or 0 | AxA: 25 or 0 | AxB: 50 or 0 | AxB: 50 or 0 |
| | NxI: 50 or 0 | NxN 100 | NxI: 50 or 0 | NxN: 100 |
| BI | BXA: 50 or 0 | BxA: 50 or 0 | BxB: 100 | BxB: 100 |
| | IxI: 25 or 0 | IxN: 50 or 0 | IxI: 25 or 0 | IxN: 50 or 0 |
| BN | BxA: 50 or 0 | BxA: 50 or 0 | BxB: 100 | BxB: 100 |
| | NxI: 50 or 0 | NxN: 100 | NxI: 50 or 0 | NxN: 100 |

OView 4-H: Predicted phenotype data for all phenotype-combinations shown in OView 4-A.

	AI			AN		BI				BN		
	\%B	\% N	data	\%B	\% N	data	\%B	\%N	data	\% B	\%N	data
AI	25	25	8000	25	50	8000	50	25	8000	50	50	8000
	25	0	6200	25	0	4400	50	0	6200	50	0	4400
	0	25	6020	0	50	6020	0	25	4040	0	50	4040
	0	0	9331	0	0	3311	0	0	3131	0	0	2222
AN	25	50	8000	25	100	0800	50	50	8000	50	100	0800
	25	0	4400	0	100	0602	50	0	4400	0	100	0404
	0	50	6020				0	50	4040			
	0	0	3311				0	0	2222			
BI	50	25	8000	50	50	8000	100	25	0080	100	50	0080
	50	0	6200	50	0	4400	100	0	0062	100	0	0044
	0	25	4040	0	50	4040						
	0	0	3131	0	0	2222						
BN	50	50	8000	50	100	0800	100	50	0080	100	100	0008
	50	0	4400	0	100	0404	100	0	0044			
	0	50	4040									
	0	0	2222									

Figure 20: A Super-Punnett Overview for a " 3 alleles per individual" theory.

		aaaa	aad		add		$\begin{gathered} \text { ddd } \\ \mathbf{d} \end{gathered}$	
		a	d	a	d			
aaa	aa		$\begin{gathered} \mathrm{aaa} \\ \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} \text { aaa } \\ \text { A } \end{gathered}$	$\begin{gathered} \text { aad } \\ \text { B } \\ \hline \end{gathered}$	$\begin{gathered} \text { aaa } \\ \text { A } \end{gathered}$	$\begin{gathered} \mathrm{aad} \\ \mathrm{~B} \end{gathered}$	aad B
aad	aa	$\begin{gathered} \mathrm{aaa} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} \mathrm{aaa} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} \text { aad } \\ \text { B } \\ \hline \end{gathered}$	$\begin{gathered} \text { aaa } \\ \text { A } \\ \hline \end{gathered}$	$\begin{gathered} \text { aad } \\ \text { B } \end{gathered}$	aad B	
	ad	$\begin{gathered} \text { ada } \\ \text { B } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{ada} \\ \mathrm{~B} \\ \hline \end{gathered}$	add C	$\begin{gathered} \text { ada } \\ \text { B } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { add } \\ \text { C } \\ \hline \end{gathered}$	add C	
add	ad	$\begin{gathered} \text { ada } \\ \text { B } \\ \hline \end{gathered}$	$\begin{gathered} \text { ada } \\ \text { B } \\ \hline \end{gathered}$	$\begin{gathered} \text { add } \\ \text { C } \\ \hline \end{gathered}$	$\begin{gathered} \text { ada } \\ \text { B } \\ \hline \end{gathered}$	$\begin{gathered} \text { add } \\ \text { C } \\ \hline \end{gathered}$	$\begin{gathered} \text { add } \\ \mathrm{C} \\ \hline \end{gathered}$	
	dd	$\begin{gathered} \mathrm{dda} \\ \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{dda} \\ \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} \text { ddd } \\ \text { D } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{dda} \\ \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} \text { ddd } \\ \text { D } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { ddd } \\ \text { D } \\ \hline \end{gathered}$	
ddd	dd	$\begin{gathered} \hline \text { dda } \\ \text { C } \end{gathered}$	$\begin{gathered} \hline \text { dda } \\ \text { C } \end{gathered}$	$\begin{gathered} \text { ddd } \\ \text { D } \end{gathered}$	dda C	ddd	$\begin{gathered} \hline \text { ddd } \\ \mathrm{D} \end{gathered}$	

Figure 21: A Summary of Research on GCK-based Problem Solving

	date of study	date of dissrt n	GCK used $?$	at MG?	interpretiv e framework	individuals or groups?	skill level	focus of research
Collins	-	1986	yes	no	Reif (PS)	individuals	novice	strategies
Thomson	-	1993	yes	no	Darden	individuals	expert	strategies
Hafner	1990	1991	yes	yes	MRPSG	individuals	novice	strategies
Finkel	1992	1993	yes	yes	Sociology of Science	groups	novice	interactions \& strategies
Wynne	1993	1995	yes	yes	Clement,...	groups	novice	strategies
Lem- berger	1994	1995	yes	yes	Conceptual Change	groups	novice	 instruction
Johnson	1992	1996	yes	yes	Darden	groups	novice	strategies
Rusbult	$1992-94$	1997	yes	yes	ISM	groups	novice	instruction

Figure 22: The relative complexity of models proposed by students.

my name for the model	alleles in populatio n	alleles in individual	number of phenotypes	number of genotypes	total number of crosses	non- duplicate crosses
2-and-2	2	2	2 or 3	3	9	6
3-and-2	3	2	3 to 6	6	36	21
4-and-2	4	2	4 to 10	10	100	55
2-and-3	2	3	2 to 4	4	72	36
3-and-3	3	3	3 to 10	10	648	324
4-and-3	4	3	4 to 20	20	3200	1600
4-and-4	4	4	4 to 35	35	2450	1225

The "total number of non-duplicate crosses" refers to either crosses where genotypes vary (for models with 2 alleles per individual) or to crosses where the genotypes and/or phenotypes vary (for models with 3 or 4 alleles per individual), as explained in Section B15.

Section B15 contains a Prediction Overview, with accompanying explanation, for an easy way to represent the 36 crosses in the ' 2 -and- 3 ' model. A similar system can be used for the other models that have 3 or 4 alleles per individual, although it is questionable whether there can be an "easy" way to do the 324 crosses (or more!) that are possible for these models.

