homesciencedesigngoalseducationx-ratedISMbonus

 

A Model of "IntegratedScientific Method"
and its Application for the Analysis of Instruction

 

a dissertation submitted by Craig F. Rusbult
for a PhD degree at the University of Wisconsin-Madison
May 1997
  


 

CHAPTER 1:  An Overview

     Introduction

     Objective 1

     Objective 2

     Significance of the Research

 


 

CHAPTER 2:  A Model of "Integrated Scientific Method"

     2.00:  Goals for a Model of ISM

 

The ISM Framework

     2.01:  Empirical Factors in TheoryEvaluation

     2.02:  Conceptual Factors in TheoryEvaluation

     2.03:  Cultural-Personal Factors inTheory Evaluation

     2.04:  Theory Evaluation

     2.05:  Theory Invention

     2.06:  Experimental Design

     2.07:  Problem Solving, Thought Styles,and Thinking
           A.  Problem-SolvingProjects
           B.  ThoughtStyles
           C.  MentalOperations

 

AN EVALUATION OF ISM AS A DESCRIPTIVE FRAMEWORK

     2.08:  Can ISM Describe a Wide Rangeof Views and Practices?
           A.  OneFramework, Many Elaborations
           B.  CanISM describe a wide range of views?
           C.  ExternalConsistency and Retroductive Inference?
           D.  Cultural-PersonalInfluence?
           E.  Hypothetico-DeductiveReasoning?
           F.  Analysisand Holism
           G.  CanISM describe a wide range of science?
           H.  IsISM biased?
            I.  CanISM cope with differences in terminology?

     2.09:  Is ISM a model for 'scientificmethod'?  (Part 1)
           A.  APenchant for Patterns?
           B.  Skepticsabout Methods
           C.  DoesISM try to describe a 'method' in science?
           D.  IsISM a Model?

 

AN ISM ELABORATION

2.1:  Empirical Factors in Theory Evaluation

     2.11:  System and Model, Predictionsand Observations
           A.  Theories
           B.  ExperimentalSystem
           C.  Theory-BasedModel of Experimental System
           D.  Model-BasedPredictions
           E.  ExperimentalObservations

     2.12:  Hypothetico-Deductive Logic
           A.  Degreeof Agreement
           B.  Degreeof Predictive Contrast
           C.  TwoEvaluation Criteria, and Multiple Sources of Data

2.2:  Conceptual Factors in Theory Evaluation

     2.21:  Simplicity and Internal Consistency
           A.  Simplification
           B.  Systematicity
           C.  Simplicity
           D.  InternalConsistency

     2.22:  Conflicting Criteria
           A.  Simplificationversus Completeness and Empirical Adequacy
           B.  AdHocness versus Inventive Revision

     2.23:  Constraints on Theory-Components

     2.24:  Description and Explanation
           A.  Isthere an explanation for gravity?
           B.  Empiricism
           C.  Theories(descriptive and explanatory) in ISM

     2.25:  Cognitive Utility
           A.  TheoryStructure and Cognitive Structure
           B.  PersonalThinking Styles and Communal Thought Styles

     2.26:  Research Utility
           A.  Acceptanceand Pursuit
           B.  EvaluationCriteria for Immature Theories
           C.  Ideasfor Experimental Design
           D.  Howa 'False Model' can be Useful
           E.  UsefulFunctions of Simplification

     2.27:  External Consistency
           A.  OverlappingDomains and Shared Components
           B.  AShared Domain, with Competitive Theories
           C.  AShared Component (with inconsistency) in Different Domains
           D.  AShared Component (with consistency) in Different Domains
           E.  Componentor Conclusion?
           F.  Conceptualor Empirical?

     2.28:  External Connections
           A.  Levelsof Organization
           B.  Theorieswith Wide Scope
           C.  ExternalRelationships viewed as Internal Relationships
           D.  Isa 'grand unified theory' a worthwhile goal?
           E.  Progressingfrom Description to Explanation
           F.  Unificationas Consilience with Simplicity
           G.  ANarrowing of Domains

2.3:  Cultural-Personal Factors

     2.31:  Five Types of Influences
           A.  PsychologicalMotives and Practical Concerns
           B.  MetaphysicalWorldviews and Ideological Principles
           C.  Opinionsof Authorities

     2.32:  The Social-Institutional Contextof Cultural-Personal Factors

     2.33:  Mutual Interactions betweenScience and Culture

     2.34:  Personal Consistency

2.4:  Theory Evaluation

     2.41:  Intrinsic Status and RelativeStatus

     2.42:  Responses to Theory Evaluation

     2.43:  Truth Status and Utility Status

     2.44:  The Limits of Logic, and RationallyJustified Confidence
           A.  Limitationsof Hypothetico-Deductive Logic
           B.  Limitationsof Observations
           C.  Limitationson Inductive Logic
           D.  PotentialProblems and Actual Problems

     2.45:  Conflicts and Controversies
           A.  EmpiricalFactors and Conceptual Factors
           B.  Relativism
           C.  Realismand Instrumentalism

2.5:  Theory Selection and Invention

     2.51:  Selection and Invention

     2.52:  Retroductive Logic and EmpiricallyInspired Invention
           A.  Timing
           B.  Purpose
           C.  LogicalLimitations
           D.  Inventionof a Domain-Theory or System-Theory
           E.  MultipleEmpirical Constraints and Retroductive Induction

     2.53:  Conceptually Inspired Invention
           A.  Analysis-and-Revision
           B.  InternalConsistency
           C.  ExternalRelationships

2.6:  Experimental Design

     2.61:  Goal-Directed ExperimentalDesign
           A.  Knowledgeabout Theories and Experimental Systems
           B.  GatheringData in Early Stages of Development
           C.  Strategiesand Principles for Experimental Design
           D.  Knowledgeof Experimental Techniques
           E.  AnomalyResolution
           F.  PredictiveContrast and Crucial Experiments
           G.  HeuristicExperiments and Demonstration Experiments
           H.  Experimentsin Problem-Solving Projects

     2.62:  Taking Advantage of Opportunities

     2.63:  Thought Experiments
           A.  ThoughtExperiments and Physical Experiments
           B.  FourTypes of Thought-Experiments

2.7:  Problem Solving, Thought Styles, and Thinking

     2.71:  Problem Solving in Science
           A.  Problems
           B.  Problem-SolvingActions
           C.  Problem-SolvingProjects
           D.  ActionEvaluation
           E.  PrivateEvaluation and Public Evaluation
           F.  Preparation
           G.  Levelsof Problem Solving
           H.  A3Ps Model of Science
            I.  ABasic Theme with Variations
            J.  Interactionsbetween Stages and Activities
           K.  Interactionsbetween Levels of Problem Solving

     2.72:  Thought Styles
           A:  Definitions
           B.  Effectson Experiments and Theories, Goals and Procedural Styles
           C.  TwoMetaphors: a Puzzle and a Filter
           D.  ProblemPosing
           E.  Conflictsin Problem Posing
           F.  Preparation,Probing, and Persuasion
           G:  Variety
           H:  Conformity
            I:  Change

     2.73:  Motivation and Memory, Creativityand Critical Thinking
           A.  Motivation
           B.  Memory
           C.  Creativityand Critical Thinking

 

AN EVALUATION OF ISM AS A DESCRIPTIVE FRAMEWORK

2.8:  Other Views of Scientific Method

     2.81:  Alternative Elaborations andBorrowed Ideas

2.9:  Is ISM a model for 'scientific method'?  (Part 2)

     2.91:  Description, Prediction, Explanation,Prescription
           A.  Description
           B.  Prediction
           C.  Explanation
           D.  Prescription

     2.92:  Is ISM a model for a method?

 


 

CHAPTER 3:  An Integrative Analysis of a Problem-Solving Classroom

     3.11:  Selection of a Course for Analysis

     3.12:  A Classroom Context for ProblemSolving
           A.  Effect-to-CauseProblems
           B.  TheClassroom

3.2:  Methods for the Analysis

     3.21:  Activities and Experiencesin a Functional Analysis

     3.22:  An Overview of the Analysis

     3.23:  Major Instructional Activities

     3.24:  Creating a Classroom Atmosphere
           A.  Studentsas Scientists
           B.  Storiesabout Science
           C.  MetacognitiveReflection
           D.  Social-IntellectualInteractions

     3.25:  Genetics Problems in the Classroom
           A.  GeneticsConstruction Kit (GCK)
           B.  AStructured Representation of Mendel's Model
           C.  GCKProblems that require Model Revising

     3.26:  Science Experiences

     3.27:  Three Stages of Analysis

     3.28:  Sources of Information forthe Analysis
           A.  Methodsfor the Central Activity
           B. Methodsfor Other Activities

3.3:  The First Phase of Analysis - Student Experiences in EachActivity

     3.31:  Activity Group #1 - Black BoxModel Revising
           A:  Developing(building and revising) Models
           B:  AStudent Conference
           C:  RevisingModels

     3.32:  Activity-Group #2 - GeneticsPhenomena
           A:  TheCookie Analogy
           B:  HumanVariations and Human Pedigrees

     3.33:  Activity Group #3 - InitialModels
           A:  Developinga Mendelian Model
           B:  Developinga Model of Meiosis
           C:  GCKProblems without Model Revising

     3.34:  Activity Group #4 - GeneticsModel Revising
           A:  GCKProblems that require Model Revising
           B:  StudentConferences

     3.35:  Activity Group #5 - ManuscriptPreparation
           A:  ManuscriptWriting and Manuscript Revising

3.4:  The Second Phase of Analysis -- The Structure of Instruction

     3.41:  An Introduction to the SecondPhase of Analysis

     3.42.  Preparation by Learning Procedures

     3.43:  Preparation by Learning Concepts
           A.  ProvidingConceptual Knowledge for Model Revising
           B.  Simplifyingthe Process of Analysis-and-Revision
           C.  LimitingWhat Students Know About Genetics

     3.44:  Posing Problems
           A.  Posingis done by the Teacher
           B.  Posingis done by Students
           C.  DoStudents Pose Problems?

     3.45:  Adjusting the Level of Difficulty
           A.  WhyAdjustments are Important
           B.  Whento adjust?  Before or During Problem Solving
           C.  TheTeacher as a Source of Procedural Knowledge
           D.  TheTeacher as a Source of Conceptual Knowledge
           E.  TheTeacher as an Adjuster of Problem Difficulty
           F.  TheTeacher as a Source of Emotional Support

     3.46:  Helping Students Learn fromTheir Experience
           A.  TheTeacher as a Facilitator of Learning
           B.  Learningby Metacognitive Reflection
           C.  Learningfrom Other Students

     3.47:  Stories about Science and Scientists
           A.  Storiesabout Science: Strategies for Problem Solving
           B.  Storiesabout Science: Having Fun as a Scientist

     3.48:  Functional Relationships inthe Instruction
           A.  FunctionalRelationships Within Activities
           B.  FunctionalRelationships Between Activities

3.5:  Suggestions for Improving the Course

     3.51:  Suggestions by Others

     3.52:  My Suggestions for Improvement
           A.  SupplementingIncomplete or Inauthentic Science Experiences
           B.  UsingISM in Discussions of Problem-Solving Strategies
           C.  UsingPrediction Overviews

3.6:  Evaluating the ISM-Based Analysis

     3.61:  Understanding the Structureof Instruction

     3.62:  Testing and Improving the AnalyticalUtility of ISM
           A.  TestingISM as a Tool for Instructional Analysis?
           B.  AnImproved Understanding of ISM-Based Analysis?
           C.  AnImprovement in ISM as a Tool for Analysis?
           D.  UsingISM as part of an Eclectic Analytical Framework?

     


 

CHAPTER 4:
Potential Educational Applications
for a Model of
"Integrated Scientific Method"

4.1:  Using ISM for Instructional Design

     4.11:  Aesop's Activities

     4.12:  Analysis and Design

4.2:  Using ISM in the Classroom

     4.21:  Learning from Experience

     4.22:  Coping with Complexity

     4.23:  Should Scientific Method beX-Rated?

4.3:  Using ISM for Teacher Education

4.4:  General Thinking Skills and a "Wide Spiral" Curriculum

     4.41:  A Model for an "IntegratedDesign Method"

     4.42:  A Wide Spiral Curriculum

     4.43:  In Praise of Variety in Education

4.5:  An Overview of "ISM in Education"

     


 

References

 


 

APPENDIX

A1:  A Brief History of ISM-Diagrams

     

A2:  Controversies about Scientific Method

     A21:  Logical Skepticism
           A:  Hypothetico-DeductiveLogic
           B:  Theory-InfluencedObservations
           C.  ExtremeSolutions for Pseudo-Problems

     A22:  Empiricism

     A23:  Realism and Instrumentalism
           A:  TheFlexibility of Critical Realism
           B:  Prosand Cons of Instrumentalism
           C:  Isthere Scientific Progress?
           D:  DoScientists Create Reality?

     A24:  Relativism
           A.  Motivesfor Relativism
           B.  Criticismsof Radical Relativism

     A25:  Tools for Analysis: Idealizationand Range Diagrams
           A.  Analysisby Idealization
           B.  Analysisusing Range Diagrams

     

B1:  Prediction Overviews, and Potential Problem-Solving Actions

     B10:  A New Type of Representation:Prediction Overviews
           A.  ASystem of Symbols
           B.  APrediction Overview for a Model of Dominance
           C.  Utility- Scientific, Instructional, and Analytical

     B11:  A Model for Round 1 -- Codominance
           A.  AnomalyRecognition
           B.  AGeneral Problem-Solving Strategy
           C.  AnomalyResolution
           D.  ModelRevising

     B12:  A Model for Round 2 -- MultipleAlleles
           A.  AnomalyRecognition
           B.  AnomalyResolution
           C.  ModelRevising
           D.  OtherSub-Patterns for the Pattern of Multiple Alleles

     B13:  A Model for Round 3 -- X-linkage
           A.  AnomalyRecognition
           B.  AnomalyResolution
           C.  ModelRevising

     B14:  A Model for Round 4 -- Autosomallinkage

     B15:  A Prediction Overview for "3Alleles per Individual"

     B16:  A Comparison of Three Symbol-Systems

     

B2:  Actual Problem-Solving Actions

     B20:  Four Sources of Empirical Datafor the Analysis

     B21:  An Overview of the Analysis

     B22:  An ISM-based Analysis of Problem-SolvingActions
           A.  AnOverview of the Problem-Solving Process
           B.  AnomalyRecognition
           C.  Serendipity,Surprise, Alertness, Statistics
           D.  ConnectingAnomaly Recognition with Anomaly Resolution
           E.  AnomalyResolution by a process of Invention-and-Evaluation
           F.  Memoryfor Models
           G.  ConceptualConstraints on Thinking
           H.  ThreeAlleles Per Individual?
            I.  ProtectedComponents
            J.  ConceptualInformation from the Teacher
           K.  AnExample of Conceptual Assistance
           L.  CombiningIdeas in New Combinations
           M. Key Factorsin Successful Model Revising
           N.  UsingTime: Observation and Interpretation
           O.  TheoryEvaluation: Balancing Empirical and Conceptual Factors
           P.  Denialof Anomaly
           Q.  Evaluationbased on Thought Styles and Complexity
           R.  CombiningPerseverance and Flexibility
           S.  Observablesand Unobservables, Logic and Patience
           T.  RetroductiveInference of Models and System-Theories
           U.  DescriptiveTheories and Explanatory Theories
           V.  TestingModels: Experimenting and Evaluating
           W. Goal-OrientedExperimental Design
           X.  Trial-and-Errorwith Fluent Speed
           Y.  AStory of Goal -Oriented Wandering
           Z.  Competitionand Cooperation

 


http://www.sit.wisc.edu/~crusbult/toc.htm

top of page  

home  science design  goals education  x-rated ISM  bonus